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IMGINEEJUNG LiBKAR*

ABSTRACT

Many existing algorithms for obtaining the eigenvalues and

eigenvectors of matrices would make poor use of such a powerful parallel

computer as the ILLIAC IV. In this paper Jacobi's algorithm for real

symmetric or complex Hermitian matrices, and a Jacobi-like algorithm

for real non- symmetric matrices developed by P. J. Eberlein, are

modified so as to achieve maximum efficiency for the parallel compu-

tations.
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1. Introduction . With the advent of parallel computers, the

study of computationally massive problems became economically possible.

Such problems include, for example, solution of sets of partial differential

equations over sizable grids, and multiplication, inversion, or determination

of eigenvalues and eigenvectors of large matrices.

An example of a parallel computer is the ILLIAC IV . This computer

is essentially an array of coupled arithmetic units driven by instructions

from a common control unit. Each of the arithmetic units, called processing

elements (PE's), have 20^+8 words of 6^-bit memory with an access time under

^20 nanoseconds. Each PE is capable of 6U-bit floating point multiplication

in about 550 nanoseconds . Two 32-bit floating point operations may be per-

formed in each PE in approximately the same times . The PE instruction set is

similar to that of conventional machines with two exceptions. First, the

PE's are capable of communicating data to four neighboring PE's by means of

routing instructions. Second, the PE's are able to set their own mode reg-

isters to effectively disable or enable themselves. For more detailed

description of this system the reader is referred to [2, 8, 9, 12].

The purpose of this paper is to introduce modified Jacobi and

Jacobi-like algorithms for the computation of the eigenvalues and eigen-

vectors of large real symmetric or complex Hermitian matrices, and real

non-symmetric matrices respectively, that are suitable for a parallel

computer.



2. Jacobi's Algorithm. In the classical method of Jacobi (l8^6),

[13] * a real symmetric matrix is reduced to the diagonal form by a sequence

of plane rotations A, .. = R,iR, (k = 1,2,...,), where A = A is the original

matrix and each rotation R = R(p,q,cr ) in the p, q plane through an angle

ct eliminates the off-diagonal element a^ (and hence a ), and affects
pq pq qp

"

only elements in rows and columns p and q. (See Appendix for the appropriate

value of Or to annihilate the element a .) Because of symmetry only the off-
pq pq

diagonal elements above the main diagonal are considered in what follows.

It is possible, however, to modify the present Jacobi algorithm

for a parallel computer so as to eliminate more than one off-diagonal element.

For example, for a matrix A of order k, if the orthogonal transformation R

is chosen as,

s.,

(2.1) R =

1 1

'2

where c. = cos Ct. , s. = sin a. (i = 1,2), then R A R would have zero elements
1 11 x ' '

'

in positions (1,3) and(2,U) provided that the angles C£ and ao are properly

chosen, a and ao are determined by (a n , , a_~, a__) and (a__, a,
,

, a~, )12 J v 11' 33' 13' v 22 kk' 2V
respectively.

Define m by [(n + l)/2], where n is the order of the matrix A and

[x'J is the greatest integer less than or equal to x. Let each (2m - l)

orthogonal transformations be denoted by a sweep. Observing that there are

n(n - l)/2 off-diagonal elements, and that the maximum number of these

elements which can be annihilated by an orthogonal transformation of the



type (2.1) is ['n/2"], then the modified Jacobi algorithm will attain maximum

efficiency of parallel computation if the following two conditions are

satisfied:

(i) each orthogonal transformation R should "be constructed so as

to annihilate [n/2] off-diagonal elements.

(ii) each sweep should annihilate each off-diagonal element only

once; i.e., each of the (2m - l) orthogonal transformations in a sweep should

annihilate different [n/2] off-diagonal elements.

Several annihilation regimes that satisfy the above requirements

are possible. Two different regimes are discussed below.

First Annihilation Regime . For a given sweep each of the (2m - l)

orthogonal matrices R consists of the elements,

sin a v '
p < q ,

Pq

sin a> ' p > q,

pq.

where p and q are sequences defined by

(a) for k = 1,2,...., m - 1,

q=m-k+l,m-k+2, , n-k,

f(2m -2k+l)-q, m-k+l<q<2m-2k,

(2-3) P =1 (^ - 2k) - q, ^ - 2k < q < 2m - k - 1,

L n > 2m-k-l<q,

(b) for k = m, m+ 1, , 2m - 1,

q = 4m-n - k , km - r\ - k + 1 , , 3m - k - 1
s

n

,

q<2m-k+l,

(2.1+) p = ( (km - 2k) -q

,

2m - k + 1 < q < km - 2k - 1 »

(6m - 2k - l)-q, km - 2k - 1 < q .



The remaining elements of R are zero except for n odd, then R'
k

'
) = lK 2m-k,2m-k

For a given k, the angles a^ ' are determined for all (p,q) such that a^
(k)eliminates the element a v

' ; see Appendix.
pq

Let n = 8 and k = 2, then the pairs (p,q) are given by ((2,3);

(1,4); (7,5); (8,6)} and R
2

is of the form,

R (2 X
11

R (2) R (2)R
22

R
23

-R
23 33

-B
(2)
11+

'

42)

(2)

« 55 ?57

(2)

?66
R -p(?)R

-r^)--
:

- -.Ri
2

)
:

i(2)
'(2)

K
68

R
88

while for k

of the form

7 the pairs (p,q) are {(8,1); (7,2); (6,3); (5,1+)} and R is

R (7)
'11

I

-R (7)

18

R (7)
22

I

I

I

i(7)"R
27

R (7)

?
3

-R
(7)

36

R (7) Jl)
1+1+ 1+5

R (7) R (7)"R
l+5

R
55

i

i

i

1(1)

R (7;

27
1

R

aft)

(7)

18

'(7)
JAQQ



If the order of the matrix is odd, say n = 7, then for k = 3 the pairs (p,q)

given by {(1,2); (7,3); (6,1+)} and R
3

is of the form,are

•

(3) R (3)R
ll

R
12

p (3) R (3)~R
12

K
22

R (3)

33

-R
(3)

37

R (3)

i

i l
I

'(3)
-\6
—

,(3)

1(3)R
66

,(3)

37

i(3)

For example, in a given sweep, denoting each element eliminated in

the k-th transformation by the integer k, the patterns of the annihilated

elements for matrices of orders 16 and 15 are shown below.



* 7 © 6 © 5 © u © 3 © 2©
* 6©?© J'©3©?©^

* 5 © ^ © 3 ©2©^
-X- i+©3©2©i
* 3 © 2 © ^(s

if 2 © 1

* 1



Second Annihilation Regime . This regime satisfies conditions (i)

and (ii) for matrices of order n = 27 , where 7 is an integer. The elements

of each orthogonal transformation, in a given sweep, R^ (k = 1,2,..., n - l)

are given by (2.2). For k = 1,2,..., n/2 the pairs (p,q) are defined by,

q = 2,1+, 6, ..., n,

(2.5) P

+ (n - 2k + 1),

kq - 2k + 1.

q < 2k

q > 2k .

Let n = 8 and k - 3, then the pairs (p,q) are {(5,2); (7,k); (1,6); (3,8)}

and R^ is of the form

,(3)
11
t

1

,(3)
l

i6

,(3)
22
I

,(3)

25

,(3)
l

33
1

•(3) :

"R
25
"

ii
1

1

if
3)

1+7

R (3)R
l6

,(3) !

^55
;

;(3)
{

66

-R (3)
^7 77

-RJ(3)
38

,(3)
v

38

3)
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In order to construct the orthogonal transformations R for

k = n/2 + 1, n/2 + 2,..., n-1; consider the sequence L = 1,2,..., y - 1.

7-L-leach value, of L there are N = 2 /
" orthogonal matrices R given by,

For

k

(2.6) R
k

= diag (H{
k)

, H^
k)

,...., H\[
k)

)

L-l -L
where t = 2 , k = n(l-2 ) + I, and i = 1,2,..., N. The sequences p and q

for each HA ', (M = l,2,..,t), are defined by.

where,

p = i + 1+N (M-l) ,

q = p + 2(N+i-l) - 2N[0(1)]
,

i = 1,2,. ..,21,

, i + 2 (M-l) < UN

0(1)

1 » otherwise .

Let n =8, L =2, and I = 1, then k = 7, and the pairs (p,q) are given by

{(1,3); (2,10 j (5,7); (6,8)} and 1^ is of the form,

r
R (7)
11

i

in.
13

,(7)
13

,(7)

22

K
(7)

K
33

-R (7)

2k'

>(7)
V

2U

t
(7)

R (7)R55"

57

n(7)

>(7)
v

57

,>J)____L_.R (7)

?
(7)

77

,(7)

1



The pattern of the annihilated elements in one sweep for a matrix

of order 16 is shown below, where those elements annihilated in the k-th

transformation are denoted by the integer k.

* 1 QJ) 2(iJ 3(19 k(J) 5(19 6(iij 7(1

* 8© 7© 6© 5© 4© 3@ 2©
* 1© 2© 3© U© 5© 6© 7

* 8© 7© 60 5© h@ 3©
* 1© 2© 3© i+O 5© 6

* 8© 7© 6© 5© O
* 1© 2© 3© M© 5

* 8© 7© 6© 5©
* l(B) 2(11) 3(lty *+

* 8© 7© 6©
* 1© 2© 3

* 8© 7©
* 1© 2

* 8©
*- 1
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Using one quadrant of the ILLIAC IV, (6k PE's), then for a

128 x 128 matrix, the 6^4- angles of each transformation are determined sim-

ultaneously, one angle per PE. Once the transformation matrix R is deter-

mined, the matrix A, -, = R A, R is computed in parallel [7]. Assuming that

the matrix has converged, (using some criterion [13]), to the diagonal

form after u sweeps, or after r - 1 = u (2m-l) orthogonal transformations,

then the diagonal elements of A = WAW are taken to be the eigenvalues

of A. The columns of ¥ = (V V V, ) are the corresponding eigen-
x u u-1 1 to &

vectors, where for the j-th sweep V. = n (R ) ., (j = 1,2,. ..,u).
J k=l K J

A similar algorithm as that described above [11] has been

programmed in ILLIAC IV assembly language and successfully tested on an

ILLIAC IV execution simulator [1].
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3. A Jacobi-Like Algorithm for Nonsymmetric Matrices .

Eberlein [3,k] showed that for an n x n matrix A, complex in general,

there exists a matrix U = II. U, (k,m) generated from a sequence of two

dimensional transformations U„ (k,m), where (k,m) is the pivot pair, such

that A T
= U~" A U is arbitrarily close to being normal) i.e., the matrix

(A T
A - A

T
A ) is arbitrarily small. At each stage of the iteration,

based on the elements of the k-th and m-th rows and columns, the para-

meters of U „ were chosen such that the decrement of the Euclidean norm
I

of A» is given by,

N
2
^) - ^(U^Ug) > [l/3n(n-l)]. N^A* - A*A^)

where, if (A) = Z la. . I .

In this paper, the above algorithm has been modified for

parallel computation. The transformations U, are n-dimensional, and

their parameters are based on all the elements of the matrix A.. A lower

bound on the decrement of the Euclidean norm of A„ is given by,

H
2
^) - ^(U^Ug) > (lAn) ^(A

£
A* - A*A^).

Once the matrix is practically normal, one can use the optimal procedure

of Goldstine and Horwitz [5] for reducing it to the diagonal form, thus

the eigenvalues and eigenvectors of A are obtained.

Since a nondiagonable matrix cannot be similar to a normal

matrix, then this procedure yields its best results for diagonable matrices,

(see example 7 in [3], P- Qk)

.

Let the original matrix A be real, diagonable, and of an

even order n = 2r, (if n is odd A is replaced by diag (A,v) of order n + l),

then it can be partitioned as follows,
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(3.1) A =

A
ll

A
12

A
21

A
22

^1 \2

A
lr

A
2r

A
rr

where each siibmatrix A
km ,

(k, m = 1, 2, ..., r),

is given by,

3-2) V
a
2k-l, 2m- 1

a
2k-l, 2m

a a.~, _
2k, 2m-l 2k; 2m

Let,

D
km ~ (a

2k-l, 2m-l " a
2k, 2m j

^ 3 ' 3 ^
E
km " (a

2k-l, 2m ~2k, 2m-l'
- a.

V =

l-1, 2m
+ a

2R, 2m-l'



13

and,

(3.10

kAa) = E (i? + e
2

)1 k,m km fan

K
2
{A) - im D

km E
km

Assume also that A has been scaled such that F~(A) < 1, and denote theN
2
^

t t
matrix (A A - A A) by C.

-1
Lemma 1. Let A' = Q~ A Q,, where Q, = diag (S , S , . ..,S ),

and S = S = . . . = S = S is given by,

(3-5)

cosh Y sinh Y

sinh ¥ cosh ¥

Define Y by,

(3.6) tanh h ¥ = -2k
2
(A)/k

1
(A]

Provided that k_ (A) > 2 |k (A)|, the following relation holds,

(3-7) A^(A) > k
2
(a)/k.(a)

2
V " 1

where £tr(A) = IT (A) - tr(A') is the decrement of the Euclidean

of A.

norm

Proof. The elements of each submatrix A' = S A, S are
km km

given by



Ik

a
2k-l,2m-l = a

2k-l,2m-l
COsh2 *" a

2k,2m
sinh2 * +

|
Ekm

sinh 2*

a
2k,2m

=: - a2k-l,2m-l
sinh^ + a

2k?2m
cosh

2
'* - 1 E^ sinh 2*

! , 2.

(3' Q
)

a
2k-l, 2m =

|
D
km

slnh 2* + a
2k-l,2m

COsh *
" a

2k, 2m-l
Sinh

*

2 2
a ', „ -, = -1 D. sinh 2\lr - a_. , sinh \|/ + a„ _ , cosh \|/2k,2m-l ^ km Y 2k-!, 2m Y 2k,2m-l T

Therefore,

1,2 <v = n2 (v + < dL + eL> sinh2 2* + "wi™ sinh ^

and consequently,

(3.9) ^2

<v = -Vta sinh ^ - 1 < DL + EL> (cosh u*
- 1}

Since N (A) = Z N (A. ), then

k,m

(3.10) AN
2

(A) = -1 (cosh ky -1) k
±
(a) - (sinh k^i) *

2
(a).

2

2
A necessary condition for AN (A) to be an extremum with respect to * is

^ AN
2

(A) = 0, this yields relation (3-6),
cnjr

tanh ky = -2/c
2
(A)//c

1
(A).

From the definition (3.U) it is clear that ^(A) > 2|/c
2
(A)|. Excluding

for the time being the case ^(A) = a|fCg(A)|, then the second derivative

of ^2
(A) with respect to ¥ evaluated for ¥ in (3-6) is given by,

(3 11}
-8k

1
(A)[1-(Uk|(A)/^(A))] (cosh H)
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and is less than zero. Thus, for the choice (3-6) of \j/, ZW (A) ach

its maximum value,

leves

(3.12) AN
2
(A) =|/c

1
(A)[l-{l-(^(A)/4(A))}2]

which vanishes only if kAA) = 0. Since one is considering the case

k (A) > 2 1 k: (A)
J

then "by the binomial theorem,

(3.13) (1 - ^(A)/^(A)) 2 = 1 - i(k/
2
(A)/Kl(A)) - 1(^(A)/^(A))'

and (3-12) yields the relation (3-7). If ^(A) = 2|/<
2
(A)|, then from

P 2 -
(3.10), £N (A) is given by J/< (A)[l - ((l + tanh kty)/(l - tanh H) 2

}].

— P P
Choosing tanh 4i|r = + (l - e )/(l + 6 ), where e is a small number, then

o -

AKT~(A) - •§(! - e)/< (A; which is greater than zero.

Lemma 2. Let A' = P A P, where P is the orthogonal trans-

formation,

(3.1>0 P = diag (T , T , , T )

A. c. r

in which

(3.15)
k

cos ep
k

sin rp
k

•sin rp,

^k
cos rn,

(k = 1,2, ....,r)
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Then, if rp is determined "by

(3-16) tan 2m. °2k-l,2k-l - °2k,2k
2c

2k-l,2k

,t .twhere c. . are the elements of the matrix C = AA -A A,

(3.17) Kp(A') > 1_ N
2
(C)

2n

Proof. The 2X2 diagonal submatrices C of the matrix C can

be expressed as

(3.18) ow = l, k,4"*'a'kk " m=i mk mk
]

k = 1,2, ....,r

Therefore,

(3.19:

where,

k=l

r

C - vL
kk

~~

k,m = 1

Km km Km Km

l"
A
km

,t .t

Km Ion Km
•]

E. B.
km km

km km

D, E.
km km

-K B.
km km

Equating the off-diagonal elements of the left and right-hand sides of (3«19)>

(3.21) f Z D. E. = - kJa)
km km 2 V

k,m2k-l,2k

Consequently, if the orthogonal matrix P is chosen such that the off-

diagonal elements c^. . _. , for all k, attain their maximum positive
2k-l,2k

values; then the inequality (3*17) is achieved. To show that, consider

the matrix C - A'A' -A' A'. Since A' = P
t
A P, then C = P

t
C P, and

the elements of the diagonal submatrices 0' = T C T are given by,



17

C
2k-l,2k = C

2k-l,2k
C0S 2cP

k
+
\

(C
2k-l,2k-l " C

2k,2k, } Sln *\

(3 ' 22) C
'2k-l,2k-l

= C
2k-l,2k-l

C° s2 fD
k

+ C
2k,2k

Sln2 \ -°2k-l,2k
S±n *\

C
'2k,2k =

C
2k-l,2k-l

Sln2 r\ + C
2k,2k

C° s2 Cp
k

+ C
2k-l,2k

Sin *\

and

C
'2k,2k-1

= C
2k-l,2k

Hence, for c ' ,
n

_, to be an extremum (3«l6) must hold. Also for the choice

(3«l6) of cp the second derivative of c' with respect to en is given by,

(3-23) -(^
2k .1>2k ) ««*k

where, h = [^.^ * (o^.^^^ - c
2k;2k )

2
]*- As a result if cos 2% is

of the same sign as c_. , _. , c ' . n „ attains its maximum value.
2k-l,2k' 2k-l,2k

Restricting cp to the interval [0,jt], the elements of T are given by,

sin
2

o)
k

= 1 - (c
2k_^ 2k

/h)

(3.24)

COs2cPk
=

|
+ (G

2k-l,2k/
h)

in which sin cp > and cos cp. is of the same sign as (c - c ).
K K. <dK — X) tdK —x '—&-) 2K

The maximum value of c ' _ ^ turns out to be 1 h, and
2k-l,2k — '

C
'2k-l,2k-l = c '

2k,2k
=
| (°2k-l,2k-l

+ C
2k,2k } * Excluding the case

when c
2^L-±,2}a-±

= c
2k 2k

and c
2k-l 2k

= °> which res^lts in T
fc

being the

identity matrix and hence s* .
2k

= 0, then from (3-21) one obtains

the inequality

(3.25) 4(A>)>1 0^
k=l -2k
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2 2
Assuming that Z c' . _. > 1 N (C), then from the fact that the

k=l
2k-^ 2k "

2n"

Euclidean norm is invariant under orthogonal transformations and from (3.25)

one obtains relation (3-17)-

From Lemmas 1 and 2 it can be seen that in order to obtain the

largest possible value of AN
2
(A), the matrix A should be subjected to the

t
orthogonal transformation M AM where M is a permutation matrix determined

as follows: Let A" -M^M and C" = A" A
nt

- A
nt

A", then M is chosen

such that each 2x2 diagonal submatrix C" has an element c"
kk '2k-l,2k

of at

least average absolute value of all the off-diagonal elements of C" if any,

and/or the difference (c" ) different from zero. For
~2k-l,2k-l 2k, 2k'

example, in order to bring the off-diagonal element c- , (u < v), of

maximum absolute value in the position (1,2) M is given by I I where

I..=I-(e. -e.) (e. -e.) . Essentially I. . AI. . has the i-th and
ij i J i J iJ iJ

j -th rows and columns of A exchanged.

After the matrix A is "prepared" by the transformation M,

A' = p A" P will produce a matrix C whose off-diagonal elements
r

2
c' ov are of such magnitudes that Z c' is at least equal to

k=l '

(l/2n) ^(c;

Theorem. Let A = A be a diagonable matrix with an even order

-1
n = 2r and IT (A)

these transformations are defined as follows:

< 1. Let k = U
£

A, U^ where U, = M| ^ « . If

(i) M, is chosen as discussed above.
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ii •Pn = diag (T^ }
, T

{

2

£)
, .

in which,

U) _

cos cp
(i)

with,

-sin cp^ }

.CO

sm cp.

cos cp.

I)

:/)

U)
o (i) 2k-l,2k-l 2k, 2k

tan 2cd;
j = 2

777
2—

k 2 Wj
c
2k-l,2k

(iii) ^ = diag(S^, *W, .... , 8
(i))

in which,

,(i)

cosh \j/ sinh \jr

sinh' \j/ cosh \|r

.

with,

tanh 1^ = -2K(Ap/ Kl (A'£

where,

A
i W WV

Then, lim N (C.) = 0.

Proof. With no loss of generality assume that M„ = I. By

Lemma 2, ^(Aj) > 1, N
2
(C ). From (3-3), (D^ } f + (E^ }

)

2
< SN

2^),
2n

then (3-^) yields, k (A.) < 2W (AJ < 2. Since the Euclidean norm is

invariant under orthogonal transformations, then k, (A') < 2, and hence by

Lemma 1,

an
2
(A ) > £(A')/k.(a;) > 1 1^(0.)

l v T
Hn"
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But since IT (A.) is a decreasing monotone function bounded below by

Z |\.
|

, where \. are the eigenvalues of A, ["10], then AN (A.) -*

as i -> oo. Hence TT(C«) -» 0, and A- is arbitrarily close to being normal.

Let A be a 128 x 128 matrix. Using one quadrant of the ILLIAC IV,

(6^4- PE's), the matrix can be stored in memory such that for a given m the

2x2 submatrices A^ (k = 1,2,..., 6^-) are assigned to the m-th DE. Once

the matrix C is determined by parallel multiplication and stored in the

same way; i.e., the k-th PE contains the submatrix C , the 6k angles <p,

can then be determined simultaneously. Also for each k the submatrices

A/ = TAT are computed simultaneously for all m, hence the updated

matrix A' = P AP is computed with all the DE's working. Similarly the

quantities D\ , E\ , and B\ of the submatrices A' , and consequently
km km km km ^

the submatrices S A' S are computed with full efficiency. This part

of the algorithm has been coded and successfully tested on the ILLIAC IV

simulator [1].

Once the matrix A is reduced to a matrix A which is practically

normal, then for any diagonal submatrix

PP

qp

pq

qq

either a = a : or a = -a and a = a , to within a reasonable
pq qp pq qp pp qq

computational error. The matrix A is reduced to the diagonal form by the

*~ 2m "1

unitary transformations V.A.V., (j = 1,2,3,...), where V. = n (R ).,
J J J J k=l ^
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as in Section 2, is the transformation matrix of the j-th sweep. For each

off-diagonal element a or a above the diagonal, the elements of the^
Pq qP

'

diagonal submatrices of R, are given "by

t
s ~(k) ~(k)

(a) a v ' = & K
' :

Pq qp

(k) (k) (k) (k)
the elements R , R , R , and R v are determined as in Section 2.

pp qq pq qp

f
. v ~(k) ~(k) . ~(k) ~(k^
(b) a v

' = -a v and a v ' = a v
:

v Pq qP PP qq

„(k) „(k) . „(k) -(k) . . , r rc1R^ - Rw = 1 :R v/ =R v/ =i where l = v -1, [5J.
PP qq 7 Pq qP 7

V2 V2

Denoting the resulting matrix by A = Y AY, the diagonal

elements of A are then the eigenvalues of A, and the columns of the matrix

Y = (n U.) (n V.) are the corresponding eigenvectors.
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APPENDIX

The orthogonal matrix R(p,q,CT ) differs from the identity matrix

by a 2 x 2 diagonal submatrix whose elements are,

(A.l) R = R = cos Cr ': R = -R = sin CC^ ^where p < q. In order
pp qq pq pq qp pq

(k)
to eliminate the off-diagonal element a , the angle oc is chosen such

pq pq

that ,. \

(A.2) tan 2aW = ,. . ?<* ,.i
Pq a

(k)
_ a

(k)

PP qq

in which cr is restricted by I oc I
< itA, [6].

pq ' pq ' ~ '

Let t. -
I 2a

(k)
|, x. =

|
a
(k)

- aW |, yv = (t? + xf)
? then,

k ' pq ' ' K ' pp qq ' k v k Tr '

(A. 3) cos
2
a
(k)

= |(1 + —)j sin
2
a
(k)

= i(l - —

)

v ;
pq

2V
yk

'

pq
2V

yk
;

(k) (k") fk)
Since a < JtA, then cos OC

y will always be taken positive and sin a v

1 Pq '

" Pq pq

will be of the same sign as [2a / (a^ - a^ )].
Pq PP qq
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